Abstract

Intraportal islet transplantation suffers from low efficiency caused by substantial islet mass loss after transplantation. How this process is regulated is still unclear. Here, we show that NF-κB activation was detectable in islet grafts shortly after transplantation of porcine islets to diabetic NMRI nu/nu mice, and systemic NF-κB inhibition in transplanted animals significantly prolonged islet graft survival. Proinflammatory cytokines alone did not cause evident cell death in pancreatic islet within 24 h, while the combination of cytokines with hypoxia resulted in a strong induction of cell death that could be blocked dose-dependently by a selective IKK-β inhibitor. Under hypoxia, NF-κB activity impaired expression of antiapoptotic gene BCL-xL, c-FLIP and survivin. NF-κB activation in isolated islets was reduced by hypoxia in a time-dependent manner, accordingly, NF-κB activation in transplanted islets diminished by time. Our data indicate that, while NF-κB has an antiapoptotic role under normoxia, low oxygen conditions decrease its activity and transform it to a proapoptotic transcription factor in pancreatic islets. We conclude that NF-κB inhibition represents a potential strategy to improve islet transplantation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.