Abstract

We investigate the influence of a visible laser treatment on the electrical performance of CVD-grown graphene-based liquid gate sensors. This method allows us to treat locally the graphene sheet, improving the performance of the structure for biochemical sensing applications. It was found critical to control the atmosphere in which the laser treatment takes place. An optimized ambient-air laser exposure shifted the Dirac point (minimum of the conductivity voltage) around 300mV to lower voltages, together with a decrease of the inter-device electrical variability. These results open the door to use the laser treatment to increase the sensibility and reproducibility of liquid gate graphene-based devices as sensors or biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.