Abstract
The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Conclusion: Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.
Highlights
As a popular worldwide herbal supplement, ginseng has been alleged to have performanceenhancing properties for thousands of years
Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge
Empirical evidence demonstrating ginsenosides can improve human physical performance and metabolism is unavailable. It has been documented in one animal study that 4 days of ginseng saponin supplementation (10 and 20 mg/kg/day) can significantly increase endurance performance of rats exercising at approximately 70% of maximal oxygen consumption (VO2max)
Summary
As a popular worldwide herbal supplement, ginseng has been alleged to have performanceenhancing properties for thousands of years. One major limitation in ginseng research is its inconsistent ginsenoside profile due to differences in variant type, harvesting season, and cultivated soil [5, 6]. To circumvent such shortcomings, bioactive components of ginseng, which can modulate metabolism and physical performance, need to be identified and studied independently in order to standardize ginseng and make it a reliable ergogenic or health-promoting nutraceutical. Empirical evidence demonstrating ginsenosides can improve human physical performance and metabolism is unavailable It has been documented in one animal study that 4 days of ginseng saponin supplementation (10 and 20 mg/kg/day) can significantly increase endurance performance of rats exercising at approximately 70% of maximal oxygen consumption (VO2max). Ginseng saponin devoid of Rg1 and Rb1 failed to demonstrate this positive effect, suggesting that these major steroidal compounds of ginseng may be responsible for the performance-enhancing attribute [7]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have