Abstract

We used a whole-brain, isotropic-voxel acquisition technique to improve the geometric distortion in diffusion-weighted (DWI) and diffusion tensor imaging (DTI) in coronal directions, which is remarkable at high magnetic fields. We performed magnetic resonance imaging of 17 healthy volunteers using a 3T scanner and obtained coronal DWI/DTI as well as coronal images that were reformatted from isotropic volume data acquired by 1.6-mm-thick axial DWI/DTI. We visually evaluated the degree of image distortion and quantitated the findings by co-registration analysis. In-plane geometric distortions in coronal DWI/DTI, particularly at the frontal base and medial temporal lobe, were dramatically diminished when the isotropic-voxel acquisition technique was used. Quantitative measurement revealed a reduction in areas of misregistration, but not their absence, in reformatted coronal images, mainly because of distortion in the anteroposterior direction in the source images. The isotropic-voxel DWI/DTI technique enabled acquisition of coronal images that represented anatomical details accurately with permissible spatial distortion while maintaining spatial resolution, even at 3T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.