Abstract

To correct eddy-current artifacts in diffusion tensor (DT) images without the need to obtain auxiliary scans for the sole purpose of correction. DT images are susceptible to distortions caused by eddy currents induced by large diffusion gradients. We propose a new postacquisition correction algorithm that does not require any auxiliary reference scans. It also avoids the problematic procedure of cross-correlating images with significantly different contrasts. A linear model is used to describe the dependence of distortion parameters (translation, scaling, and shear) on the diffusion gradients. The model is solved numerically to provide an individual correction for every diffusion-weighted (DW) image. The assumptions of the linear model were successfully verified in a series of experiments on a silicon oil phantom. The correction obtained for this phantom was compared with correction obtained by a previously published method. The algorithm was then shown to markedly reduce eddy-current distortions in DT images from human subjects. The proposed algorithm can accurately correct eddy-current artifacts in DT images. Its principal advantages are that only images with comparable signals and contrasts are cross-correlated, and no additional scans are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.