Abstract

For traditional slice methods of limit equilibrium used to analyze slope stability, some hypothetical conditions on interslice force are generally introduced to solve the problem. In order to reduce the defect theoretically due to the related hypothesis, more rigorous constraints of interslice force are completely considered in light of static equilibrium conditions and energy dissipation principle of the interface between two adjacent slices. Without hypothesis of interslice force, the slope stability analysis is transformed consistently into a non-linear programming problem to be solved. So, a generally improved solution of slice method of limit equilibrium to slope stability is put forward. In particular, influence of the dilation angle of soil on slope stability can be involved in the method. The proposed method can be utilized for any slopes with arbitrary slip surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call