Abstract

This article proposes a novel flux weakening scheme for five-phase PMSM with active harmonic currents injection. The conventional flux weakening control schemes applied in the five-phase PMSM do not consider the voltage limit drop in the fundamental subspace due to the harmonic current controller. Thus, the derivation between the reference current trajectory and actual current trajectory would cause the current distortion when applying deadbeat current controller (DBCC). This article analyses the precise voltage limit circles considering the voltage drop caused by the resistance and harmonic currents control at first. Then, a feed-forward flux weakening control algorithm is designed to optimize the current trajectory online. The gradient descent method is used to ensure the converge speed and stability of the optimized current trajectory. Thirdly, the peak value of phase currents would be clipped by the harmonic currents to prevent the inverter current limit, where a new non-linear harmonic current controller is designed to precisely control the harmonic currents. Finally, the DBCC and modified SVPWM technology are utilized to generate the duty cycle. The proposed improved flux weakening control strategy is successfully implemented in an interior five-phase PMSM, and the performance demonstrate the effectiveness of this strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call