Abstract

PurposeThis paper aims to quickly obtain an accurate and complete dense three-dimensional map of indoor environment with lower cost, which can be directly used in navigation.Design/methodology/approachThis paper proposes an improved ORB-SLAM2 dense map optimization algorithm. This algorithm consists of three parts: ORB feature extraction based on improved FAST-12, feature point extraction with progressive sample consensus (PROSAC) and the dense ORB-SLAM2 algorithm for mapping. Here, the dense ORB-SLAM2 algorithm adds LoopClose optimization thread and dense point cloud map and octree map construction thread. The dense map is computationally expensive and occupies a large amount of memory. Therefore, the proposed method takes higher efficiency, voxel filtering can reduce the memory while ensuring the density of the map and then use the octree format to store the map to further reduce memory.FindingsThe improved ORB-SLAM2 algorithm is compared with the original ORB-SLAM2 algorithm, and the experimental results show that the map through improved ORB-SLAM2 can be directly used in navigation process with higher accuracy, shorter tracking time and smaller memory.Originality/valueThe improved ORB-SLAM2 algorithm can obtain a dense environment map, which ensures the integrity of data. The comparisons of FAST-12 and improved FAST-12, RANSAC and PROSAC prove that the improved FAST-12 and PROSAC both make the feature point extraction process faster and more accurate. Voxel filter helps to take small storage memory and low computation cost, and octree map construction on the dense map can be directly used in navigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.