Abstract

The three-dimensional reconstruction of forest ecological environment by low-altitude remote sensing photography from Unmanned Aerial Vehicles (UAVs) provides a powerful basis for the fine surveying of forest resources and forest management. A stereo vision system, D-SLAM, is proposed to realize simultaneous localization and dense mapping for UAVs in complex forest ecological environments. The system takes binocular images as input and 3D dense maps as target outputs, while the 3D sparse maps and the camera poses can be obtained. The tracking thread utilizes temporal clue to match sparse map points for zero-drift localization. The relative motion amount and data association between frames are used as constraints for new keyframes selection, and the binocular image spatial clue compensation strategy is proposed to increase the robustness of the algorithm tracking. The dense mapping thread uses Linear Attention Network (LANet) to predict reliable disparity maps in ill-posed regions, which are transformed to depth maps for constructing dense point cloud maps. Evaluations of three datasets, EuRoC, KITTI and Forest, show that the proposed system can run at 30 ordinary frames and 3 keyframes per second with Forest, with a high localization accuracy of several centimeters for Root Mean Squared Absolute Trajectory Error (RMS ATE) on EuRoC and a Relative Root Mean Squared Error (RMSE) with two average values of 0.64 and 0.2 for trel and Rrel with KITTI, outperforming most mainstream models in terms of tracking accuracy and robustness. Moreover, the advantage of dense mapping compensates for the shortcomings of sparse mapping in most Smultaneous Localization and Mapping (SLAM) systems and the proposed system meets the requirements of real-time localization and dense mapping in the complex ecological environment of forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call