Abstract
This paper proposes a fault detection method for multivariate statistical process control. The proposed method combines the Forward-Backward Hidden Semi-Markov Model (HSMM) and Principal Component Analysis (PCA). A stochastic automaton was used for multi-mode detection with many observation sequences. We used agglomerative clusters to find the initial parameters of HSMM. We allocated an adaptive threshold and a fixed threshold in each mode for fault detection with PCA, including Hotelling T2 statistic and squared predictive error (Q statistic). We simulated this method on the Tennessee Eastman Process (TEP). Some faults were designed with various runs and times of occurrence. The experimental results were compared with the Mixture Bayesian PCA, Hidden Markov Model (HMM), and HSMM methods. The results are robust with an efficient detection rate. This activity recommends ways to find action plans for multi-mode process monitoring in chemical plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Prognostics and Health Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.