Abstract
Recent developments in condition-based maintenance (CBM) have helped make it a promising approach to maintenance cost avoidance in engineering systems. By performing maintenance based on conditions of the component with regards to failure or time, there is potential to avoid the large costs of system shutdown and maintenance delays. However, CBM requires a large investment cost compared to other available maintenance strategies. The investment cost is required for research, development, and implementation. Despite the potential to avoid significant maintenance costs, the large investment cost of CBM makes decision makers hesitant to implement. This study is the first in the literature that attempts to address the problem of conducting a cost-benefit analysis (CBA) for implementing CBM concepts for unmanned systems. This paper proposes a method for conducting a CBA to determine the return on investment (ROI) of potential CBM strategies. The CBA seeks to compare different CBM strategies based on the differences in the various maintenance requirements associated with maintaining a multi-component, unmanned system. The proposed method uses modular dynamic fault tree analysis (MDFTA) with Monte Carlo simulations (MCS) to assess the various maintenance requirements. The proposed method is demonstrated on an unmanned surface vessel (USV) example taken from the literature that consists of 5 subsystems and 71 components. Following this USV example, it is found that selecting different combinations of components for a CBM strategy can have a significant impact on maintenance requirements and ROI by impacting cost avoidances and investment costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Prognostics and Health Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.