Abstract

Fuzzy c-means (FCM) clustering algorithm has been widely used in automated image segmentation. However, the standard FCM algorithm takes a long time to partition a large dataset. In addition, in current fuzzy cluster algorithms it is difficult to determine the cluster centers. This paper proposes a modified FCM algorithm for MR (magnetic resonance) brain images segmentation. This method fetches in statistic histogram information for minimizing the iteration times, and in the iteration process, the optimal number of clusters is automatically determined. Using this method, an optimal classification rate is obtained in the test dataset, which includes large stochastic noises. The experiment results have shown that the segmentation method proposed in this paper is more accurate and faster than the standard FCM or the fast fuzzy c-means (FFCM) algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.