Abstract

Fuzzy c-means (FCM) clustering algorithm has been widely used in automated image segmentation. However, the standard FCM algorithm is sensitive to noise because of taking no into account the gray and spatial information of pixel. The paper proposes an improved FCM algorithm for image segmentation. We use the degree of gray similarity and distribution statistics of the neighbor pixels to form a new membership function for clustering. Not only it is effective to remove the noise spots and reduce the spurious blobs, but also it is ease to correct the misclassified pixels. Experimental results on three types of image indicate that the propose algorithm is more accurate and robust than the standard FCM algorithm

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.