Abstract

As the most widely used method for evaluating heavy metals (HMs) in soil or sediment, the enrichment factor (EF) is prone to bias and even yields misleading assessment results for HM pollution due to data uncertainties, lack of local background values and a failure to assess the comprehensive pollution of multiple HMs. Here, we developed an improved EF model integrating stochastic mathematical methods and geochemical baselines (GBs). First, GBs were obtained using the relative cumulative frequency distribution method. The probability that each HM belongs to each enrichment degree was then quantified based on the probability density function deduced from the maximum entropy method. Furthermore, we defined a synthetic index to reveal the probability that multiple HMs belongs to comprehensive enrichment degree considering the weight of each HM. Finally, the enrichment category for each HM and multiple HMs were determined following the first-order moment principle. The improved EF model was successfully applied to evaluate and predict the HM pollution in sediments collected from Poyang Lake, the largest freshwater lake in China. Slight enrichment (1.88) of multiple HMs was found in sediments from Poyang Lake, characterized by a pronounced probability (0.35) to deteriorate to the “moderate enrichment” category. Among the different HMs, Cd requires more attention considering its dominant contribution (0.51) to the comprehensive pollution and high probability (0.65) for deterioration. Otherwise, assessment results employing the improved EF model agree with the spatial patterns of HM concentrations based on spatial autocorrelation analysis and source apportionment using Pb isotopic signatures and principal component analysis. Compared with the conventional EF method, the assessment results of the improved EF model were more accurate, comprehensive and reliable. In conclusion, the improved EF model has a better capability of evaluating and predicting HM enrichment in sediments and can be helpful for optimizing control measures for HM pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.