Abstract

The electrochemical performance of LiCoPO4 (LCP) as a high-voltage positive electrode for lithium-ion batteries is significantly improved by using the aqueous binder sodium carboxymethyl cellulose (CMC). The CMC not only provides a uniform electrode surface as shown by scanning electron microscopy and elemental mapping, but also suppresses the degradation of LiCoPO4 by scavenging HF in the electrolyte solution as demonstrated by FT-IR. In comparison with other water-soluble binders such as sodium alginate (ALG) and polyacrylic acid sodium salt (PAA), the homogeneous distribution of CMC within the electrodes accompanied by high accessibility of carboxylate groups in CMC are shown to be crucial factors to achieve enhanced performance with an excellent capacity retention of 94% after 20 cycles at a rate of C/10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.