Abstract

The chalcopyrite semiconductor CuInSe2 and its constitutes Ga and/or S [Cu (InGa)Se2 or Cu (InGa)(Se,S)2], commonly referred as CIGS have been leading thinfilms for incorporation in high-efficiency photovoltaics. In conventional ZnO-N/i-ZnO/CdS/CIGS solar cells, the traditional CdS buffer is nearly optimum for the commonly used 1.15 eV (CIGS) but less optimal for higher Ga. To overcome this limitation, Cd1-yZnyS is proposed as an alternative buffer layer to replace the standard CdS in CIGS thinfilm solar cells containing an ordered vacancy compound (OVC) layer. Next, the dependence of solar cells performance on the change of Ga and Zn concentrations in absorber and buffer layers, respectively, was investigated using the AMPS-1D software. The results are potential improvement in CIGS efficiency that was obtained with replacement of CdS buffer material by its alternative in one hand, another hand by formation of OVC layer. Lastly, the optimum values of Ga and Zn concentrations were found at 0.7 and 0.6, respectively, leading to a high conversion efficiency of around 23.71%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.