Abstract

Ternary nonfullerene all-small-molecule organic solar cells (NFSM-OSCs) were developed by incorporating a nonfullerene acceptor (IDIC) and two structurally similar small molecular donors (SM and SM-Cl), where SM-Cl is a novel small molecular donor derived from the reported molecular donor SM. When doping 10% SM-Cl in the SM:IDIC binary system, the power conversion efficiency (PCE) of the ternary solar cell was dramatically increased from 9.39 to 10.29%. Characterization studies indicated that the two donors tend to form an alloy state, which effectively down-shifted the highest occupied molecular orbital (HOMO) energy level of the donor, thus promoting a higher open-circuit voltage. Interestingly, incorporating a third component (SM-Cl) with a lower crystallinity was proven to facilitate the demixing between donors and acceptors, which was contrary to the traditional findings of enhanced phase separation through the incorporation of highly crystalline molecule. Although the morphological modulation has always been a bottleneck issue in NFSM-OSCs, the findings in this work indicated that the modulation on crystallinity deviation between donors and acceptors could be an effective method to further improve the performance of NFSM-OSCs, providing a new perspective on NFSM-OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.