Abstract
Individualized treatment rules (ITRs) recommend treatment according to patient characteristics. There is a growing interest in developing novel and efficient statistical methods in constructing ITRs. We propose an improved doubly robust estimator of the optimal ITRs. The proposed estimator is based on a direct optimization of an augmented inverse-probability weighted estimator of the expected clinical outcome over a class of ITRs. The method enjoys two key properties. First, it is doubly robust, meaning that the proposed estimator is consistent when either the propensity score or the outcome model is correct. Second, it achieves the smallest variance among the class of doubly robust estimators when the propensity score model is correctly specified, regardless of the specification of the outcome model. Simulation studies show that the estimated ITRs obtained from our method yield better results than those obtained from current popular methods. Data from the Sequenced Treatment Alternatives to Relieve Depression study is analyzed as an illustrative example. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.