Abstract

Breakdown strength is an important parameter for polymer dielectric, and introducing inorganic filler into the polymer matrix is an efficient method to improve the breakdown strength. In this work, graphitic carbon nitride nanosheets (CNNS) were ultrasonically exfoliated and coated with polydopamine to obtain modified nanosheets (DCNNS), and then polyimide (PI) composite films with various CNNS and DCNNS were prepared and compared. Owing to the abundant hydroxyl groups of polydopamine, good filler-polymer compatibility and uniform filler dispersion were achieved for PI/DCNNS composites. Both breakdown strength and dielectric constant were improved with the addition of either CNNS or DCNNS. However, at the same filler content, the PI/DCNNS composites exhibited higher breakdown strength and dielectric constant than the PI/CNNS. The PI composite with 0.5 wt% DCNNS showed the highest breakdown strength of ~300 kV/mm, increased by 67.6% as compared to the pure PI, while the PI/CNNS composite with the same filler content only increased by 14.5%.

Highlights

  • Polymer dielectrics with good dielectric properties and high-energy storage density play an important role in modern information and electronic industries connected to, for example, charge storage devices and embedded capacitors [1,2]

  • It can be seen that the color of the carbon nitride nanosheets (CNNS) powder is dark-yellow, while it changes to gray-brown when coated with polydopamine

  • Since polydopamine with many hydroxyl groups is coated on the surfaces of the nanosheets, the DCNNS can form hydrogen bonds with the DMAc, which effectively improves the dispersion and stability of the nanosheets in the solvent

Read more

Summary

Introduction

Polymer dielectrics with good dielectric properties and high-energy storage density play an important role in modern information and electronic industries connected to, for example, charge storage devices and embedded capacitors [1,2]. With the rapid development of the modern power industry, more requirements are proposed on the stability of polymer dielectrics and electronic devices operating under high electrical conditions. For the insulation dielectric materials, once the surface flashover or body breakdown phenomenon occurs, it can lead to insulation dielectric surface degradation and an equipment short circuit, threatening the operational reliability of the power equipment. Polyimide (PI), as a typical engineering polymer material, has been widely used in insulation materials, microelectronics, aerospace and other fields in recent years due to its high thermal stability, excellent electrical insulation, and mechanical properties [5,6,7].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.