Abstract

The need for ending plastic waste and creating a circular economy has prompted significant interest in developing a new family of composite materials through recycling and recovery of waste resources (including bio-sourced materials). In this work, a family of natural fiber-reinforced plastic composites has been developed from paint pail waste recycled polypropylene (rPP) and waste wool fibers of different diameter and aspect ratio. Composites were fabricated by melt processing using polypropylene-graft-maleic anhydride as a compatibilizer. The internal morphology, interfacial and thermal characteristics, viscoelastic behavior, water sorption/wettability, and mechanical properties of composites were studied using electron microscopy, high-resolution synchrotron Fourier transform infrared microspectroscopy, thermal analysis, rheology, immersion test, contact angle measurement, tensile test and flexural test. The composite matrix exhibited an internal morphology of coalescent micro-droplets due to the presence of polyethylene and dry paint in the rPP phase. In general, the rheological and mechanical properties of the composites comprising higher-aspect-ratio (lower diameter) fibers exhibited relatively superior performance. About an 18% increase in tensile strength and a 39% increase in flexural strength were measured for composites with an optimal fiber loading of 10 wt.%. Interfacial debonding and fiber pull-out were observed as the main failure mechanism of the composites. The developed composites have potential for applications in automotive, decking, and building industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.