Abstract

In this paper, aramid fiber surface is modified by polyethylenimine (PEI) grafting with abundant -NH2 active groups after plasma surface activation treatment. Various aramid fiber reinforced epoxy resin composites (AFRC) are prepared. The effects of PEI grafting on the dielectric and mechanical properties of AFRC are studied. Obtained results show that PEI is successfully grafted onto aramid fiber surface as evidenced by x-ray photoelectron spectroscopy results, and effectively improves the interfacial properties between aramid fiber and epoxy resin. The dielectric properties, including DC conductivity, dielectric constant, and integration charge Q(t) of the composites are improved after optimized modification parameters, and the breakdown strength is increased by up to 23%. These are attributed to the decrease in interfacial polarization and the increase in interfacial bonding strength. Furthermore, the interfacial shear strength of AFRC is increased from 29.5 MPa to 63.7 MPa, which further verifies the improvement of interfacial performance. This paper provides a way to improve the dielectric and mechanical properties of AFRC, which is of great significance for its application in high voltage power equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.