Abstract

We report an improved version of a spot-size converter (SSC) consisting of a silicon nanowire evanescently coupled to a phase-matched Poly-Si multilayer structure. With wider transversal dimensions the multilayer structure expands the mode significantly thus increasing the coupling efficiency with the conventional single-mode fiber. Detailed optimization process of a 17-layer based SSC is discussed and its coupling efficiency with a high-NA fiber of radius 2 μm is obtained as 98% providing only 0.087 dB loss. Vertical alignment tolerance between the optimized SSC and a high-NA fiber of radius 2 μm is also shown. This novel design does not consist of a taper and can be fabricated by using CMOS compatible process. It has a short device length and more relaxed alignment tolerances with the fiber. Full-vectorial and computationally efficient finite element method and the least squares boundary residual method have been used for the analysis and optimization of the proposed structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call