Abstract

Four chemical delivery systems (CDS's) based on a dihydropyridine----quaternary pyridinium salt redox system were used for the brain delivery of benzylpenicillin (BP). CDS's 5 and 9 are diesters of C1 and C2 diols in which one hydroxyl group is esterified by the benzylpenicillin-3-carboxylic group and the other by dihydrotrigonelline. CDS's 13a and 17 are benzylpenicillin esters of amino alcohols in which the amine group is acylated by dihydro-trigonelline (13a) or by 1,2-dihydro-2-methyl-4-isoquinolinecarboxylic acid (17). In vitro relative stability studies showed that both CDS's and quaternary pyridinium salts were quite unstable in rat and rabbit blood or brain but much more stable in dog or human blood. Kinetic studies performed in rat brain homogenate demonstrated the facile enzymatic oxidation of the CDS's to the corresponding quaternary salts. Hydrolysis of the CDS's and the quaternary salts resulted in the release of benzylpenicillin. In biological media CDS 13a also yielded a water addition product, the 6-hydroxy-1,4,5,6-tetrahydropyridine derivative. In vivo distribution studies were carried out in rats. After iv administration of equimolar doses of BP and CDS's, brain benzylpenicillin levels were found to be substantially higher and more prolonged in case of 5 and 9 than of BP itself. However, administration of 13a and 17 resulted in lower brain benzylpenicillin levels due to the water addition reaction and a nonspecific brain delivery, respectively. The remarkable increase of BP levels as well as the prolonged effect after the administration of 5 and 9 is a result of an improved penetration through the blood-brain barrier of the lipophilic CDS's and a "lock-in" effect of the corresponding quaternary salts generated in situ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.