Abstract
The internal weapon bay is widely used in modern aircraft; however, because the unsteady flows of the cavity would cause dangerous store separation and intense aerodynamic noise, the leading-edge spoiler is an easy and efficient passive flow-control method. The flow control of the leading-edge flat spoiler before the cavity of a low-aspect-ratio flying-wing aircraft is investigated based on numerical simulation. Numerical results show that the leading-edge flat spoiler completely changes the cavity flow; it obviously lifts up the shear layer and reduces the pressure inside the cavity. For the store separation from the weapon bay, the leading-edge flat spoiler is a very good passive flow-control method that curbs the nose-up trend of the store and produces a safe and stable store separation. Besides, the leading-edge spoiler reduces the noise in the rear of the cavity (max 8.2 dB), but increases the noise in the middle of the cavity (max 11.3 dB). In addition, the leading-edge spoiler brings in a large drag increase to the aircraft (39.41% when the height of spoiler is 0.2 m), which would affect the operational stability of the aircraft. The results of this paper could provide a reference for the flow control of weapon bays and the design of aircraft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.