Abstract

Cordycepin production in the submerged culture of Cordyceps militaris was demonstrated using hydrolyzed corn processing protein by-products, known as corn steep liquor hydrolysate (CSLH), as an alternative nitrogen source. The growth, metabolism, and cordycepin production of Cordyceps militaris were evaluated under various concentrations of CSLH induction. The results demonstrated that CSLH addition had positive effects on the growth and cordycepin production with various C. militaris strains. The optimum strain, C. militaris GDMCC5.270, was found to effectively utilize CSLH to promote mycelium growth and cordycepin production. Low concentrations of CSLH (1.5 g/L) in the fermentation broth resulted in 343.03 ± 15.94 mg/L cordycepin production, which was 4.83 times higher than that of the group without CSLH. This also enhanced the metabolism of sugar, amino acids, and nucleotides, leading to improved cordycepin biosynthesis. The increase in key amino acids, such as glutamic acid, alanine, and aspartic acid, in the corn steep liquor hydrolysate significantly enhanced cordycepin yield. The corn steep liquor hydrolysate was confirmed to be a cost-effective accelerator for mycelium growth and cordycepin accumulation in C. militaris, replacing partial peptone as a cheap nitrogen source. It serves as a suitable alternative for efficient cordycepin production at a low cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call