Abstract

GaN-based solar cells with Mn-doped absorption layer grown by metal-organic vapor-phase epitaxy were investigated. The transmittance spectrum and the spectral response showed the presence of an Mn-related band absorption property. Power-dependent, dual-light excitation, and lock-in amplifier techniques were performed to confirm if the two-photon absorption process occurred in the solar cells with Mn-doped GaN absorption layer. Although a slight decrease in an open circuit voltage was observed, a prominent increase in the short circuit current density resulted in a significant enhancement of the overall conversion efficiency. Under one-sun air mass 1.5 G standard testing condition, the conversion efficiency of Mn-doped solar cells can be enhanced by a magnitude of 5 times compared with the cells without Mn-doped absorption layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.