Abstract
The most important challenge in a natural gas liquefaction plant is to improve the plant energy efficiency. A process topology should be implemented, which results in a considerable reduction of energy consumption as the natural gas liquefaction process consumes a large amount of energy. In particular, system design focusing on configuring cold part cycle is an attractive option. In this study, various energy recovery-oriented process configurations and the potential improvements of energy savings for small- & midscale liquefied natural gas plants were proposed and compared with almost exclusively commercial trademarks processes. These improved simulation based investigations were validated under the variation in feed gas pressure, mixed refrigerant cooling reference temperature and the pinch temperature of cryogenic plate fin heat exchanger. The simulation results exhibited considerable reduction of specific total energy consumption. Therefore, the proposed liquefaction cycles have a simple topology, hence lower capital cost and compacter plant layout, which is compatible for power-efficient, offshore, floating liquefied natural gas liquefaction plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JORDANIAN JOURNAL OF ENGINEERING AND CHEMICAL INDUSTRIES (JJECI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.