Abstract
In recent years, the lattice structure produced by additive manufacturing is a type of metal foam that has been increasingly investigated for its unique mechanical properties. However, the conventional Computer-Aided Design (CAD) is inefficient, the triply periodic minimal surfaces are rarely mixed, and the smooth transitions at the boundaries are not considered. In this study, a hybrid optimization design method based on implicit surfaces is proposed, which combines multiple implicit surfaces to achieve the continuous change in the curvature at the structure junctions and reduce the stress concentration. The hybrid lattice structures designed by this method were additively manufactured using 316L alloy via a selective laser melting. The results of the finite element analysis and mechanical compression test show that the hybrid lattice structures generated by this method exhibit a higher yield strength and energy absorption. These works can be used for other implicit surfaces, improve and enrich the types of implicit surfaces, and provide more good choices for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.