Abstract

This study explored the influence of hydrogen on the tensile properties and fracture behavior of high-strength API X70 and X80 linepipe steels with bainitic microstructures under varying hydrogen charging conditions. The X70 steel exhibited a ferritic microstructure with some pearlite, while the X80 steel showed a bainitic microstructure and fine pearlite due to the addition of molybdenum. Slow strain rate tests (SSRTs) were conducted using both electrochemical ex situ and in situ hydrogen charging methods subjected to different current densities. The SSRT results showed that in situ hydrogen-charged SSRT, performed at current densities above 1 A/m2, led to more pronounced hydrogen embrittlement compared to ex situ hydrogen-charged SSRT. This occurred because hydrogen was continuously supplied during deformation, exceeding the critical concentration even in the center regions, leading to quasi-cleavage fractures marked by localized cleavage and tearing ridges. Thermal desorption analysis (TDA) confirmed that a greater amount of hydrogen was trapped at dislocations during in situ hydrogen-charged SSRT, intensifying hydrogen embrittlement, even with a shorter hydrogen charging duration. These findings highlight the importance of selecting appropriate hydrogen charging methods and understanding the hydrogen embrittlement behavior of linepipe steels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.