Abstract

Additive manufacturing processes, especially those based on fused filament fabrication mechanism, have a low productivity. One solution to this problem is to adopt a collaborative additive manufacturing system that employs multiple printers/extruders working simultaneously to improve productivity by reducing the process makespan. However, very limited research is available to address the major challenges in the co-scheduling of printing path scanning for different extruders. Existing studies lack: (i) a consideration of the impact of sub-path partitions and simultaneous printing of multiple layers on the multi-extruder printing makespan; and (ii) efficient algorithms to deal with the multiple decision-making involved. This article develops an improved method by first breaking down printing paths on different printing layers into sub-paths and assigning these generated sub-paths to different extruders. A mathematical model is formulated for the co-scheduling problem, and a hybrid algorithm with sequential solution procedures integrating an evolutionary algorithm and a heuristic is customized to multiple decision-making in the co-scheduling for collaborative printing. The performance was compared with the most recent research, and the results demonstrated further makespan reduction when sub-path partition or the simultaneous printing of multiple layers is considered. This article discusses the impacts of process setups on makespan reduction, providing a quantitative tool for guiding process development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.