Abstract
Organometal halide perovskite (OHP) solar cells have been intensively studied because of their promising optoelectronic features, which has resulted in high power conversion efficiencies >23 %. Although OHP solar cells exhibit high power conversion efficiencies, their relatively poor stability is a significant obstacle to their practical use. We report that the chemical stability of OHP solar cells with respect to both moisture and heat can be improved by adding a small amount of Ag to the precursor. Ag doping increases the size of the OHP grains and reduces the size of the amorphous intergranular regions at the grain boundaries, and thereby hinders the infiltration of moisture into the OHP films and their thermal degradation. Quantum mechanical simulation reveals that Ag doping increases the energies of both the hydration reaction and heat-induced vacancy formation in OHP crystals. This procedure also improves the power conversion efficiencies of the resulting solar cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have