Abstract

Ground-penetrating radar (GPR) uses the recording of electromagnetic waves and is increasingly applied for a wide range of applications. Traditionally, the main focus was on the analysis of the medium permittivity since estimates of the conductivity using the far-field approximation contain relatively large errors and cannot be interpreted quantitatively. Recently, a full-waveform inversion (FWI) scheme has been developed that is able to reliably estimate permittivity and conductivity values by analyzing reflected waves present in on-ground GPR data. It is based on a frequency-domain solution of Maxwell's equations including far, intermediate, and near fields assuming a 3-D subsurface. Here, we adapt the FWI scheme for on-ground GPR to invert the direct ground wave traveling through the shallow subsurface. Due to possible interference with the airwaves and other reflections, an automated time-domain filter needed to be included in the inversion. In addition to the obtained permittivity and conductivity values, also the wavelet center frequency and amplitude return valuable information that can be used for soil characterization. Combined geophysical measurements were carried out over a silty loam with significant variability in the soil texture. The obtained medium properties are consistent with Theta probe, electromagnetic resistivity tomography, and electromagnetic induction results and enable the formulation of an empirical relationship between soil texture and soil properties. The permittivities and conductivities increase with increasing clay and silt and decreasing skeleton content. Moreover, with increasing permittivities and conductivities, the wavelet center frequency decreases, whereas the wavelet amplitude increases, which is consistent with the radiation pattern and the antenna coupling characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.