Abstract

Conventional ray-based techniques for analyzing common-midpoint (CMP) ground-penetrating radar (GPR) data use part of the measured data and simplified approximations of the reality to return qualitative results with limited spatial resolution. Whereas these methods can give reliable values for the permittivity of the subsurface by employing only the phase information, the far-field approximations used to estimate the conductivity of the ground are not valid for near-surface on-ground GPR, such that the estimated conductivity values are not representative for the area of investigation. Full-waveform inversion overcomes these limitations by using an accurate forward modeling and inverts significant parts of the measured data to return reliable quantitative estimates of permittivity and conductivity. Here, we developed a full-waveform inversion scheme that uses a 3D frequency-domain solution of Maxwell’s equations for a horizontally layered subsurface. Although a straightforward full-waveform inversion is relatively independent of the permittivity starting model, inaccuracies in the conductivity starting model result in erroneous effective wavelet amplitudes and therefore in erroneous inversion results, because the conductivity and wavelet amplitudes are coupled. Therefore, the permittivity and conductivity are updated together with the phase and the amplitude of the source wavelet with a gradient-free optimization approach. This novel full-waveform inversion is applied to synthetic and measured CMP data. In the case of synthetic single layered and waveguide data, where the starting model differs significantly from the true model parameter, we were able to reconstruct the obtained model properties and the effective source wavelet. For measured waveguide data, different starting values returned the same wavelet and quantitative permittivities and conductivities. This novel approach enables the quantitative estimation of permittivity and conductivity for the same sensing volume and enables an improved characterization for a wide range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.