Abstract

We investigated the impact of a combination treatment of nitrogen plasma exposure and forming gas annealing (FGA) for a thermally grown SiO2 layer on channel electron mobility in 4H-SiC metal-insulator-semiconductor field-effect-transistors (MISFETs) with and without deposited aluminum oxynitride (AlON) overlayers. This treatment was effective for improving the interface properties of nitrided SiO2/SiC structures formed by thermal oxidation in NOx ambient as well as pure SiO2/SiC structures. A channel mobility enhancement was perfectly consistent with a reduction in interface state density depending on the process conditions of the combination treatment, and a peak mobility of 26.9 cm2/Vs was achieved for the MISFETs with the nitrided SiO2 single dielectric layer. Comparable channel mobility was obtained with a gate insulator consisting of the AlON stacked on a thin nitrided SiO2 interlayer, indicating that both the combination treatment and the AlON/SiO2 stacked dielectrics can be integrated into the SiC MISFET fabrication processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call