Abstract

Ceramic-based dielectric capacitors have become an attractive issue due to their wide applications in current pulsed-/high-power electronic devices. Antiferroelectric ceramics generally exhibit ultrahigh energy density owing to their giant polarization activated by antiferroelectric–ferroelectric phase transition under a high electric field but suffer from large hysteresis, meanwhile giving rise to low efficiency. Herein, by introducing perovskite compound Sr(Fe0.5Ta0.5)O3 into an antiferroelectric NaNbO3 matrix, a stabilized antiferroelectric phase and an improved relaxor behavior are observed. That is, relaxor antiferroelectric ceramics are constructed. Accordingly, a double polarization–electric field (P–E) loop becomes slimmer with increasing incorporation of dopants, leading to an ultrahigh recoverable energy density of 11.5 J/cm3, an energy storage efficiency of 86.2%, outstanding frequency/cycling/thermal reliability, and charge–discharge properties in 0.90NaNbO3-0.10Sr(Fe0.5Ta0.5)O3 ceramics. This work reveals that inducing the relaxor behavior in antiferroelectric materials is an effective route to improve their capacitive energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call