Abstract

AimIn a pilot study to improve detection of malignant lesions in breast mammograms, we aimed to develop a new method called BDR-CNN-GCN, combining two advanced neural networks: (i) graph convolutional network (GCN); and (ii) convolutional neural network (CNN). MethodWe utilised a standard 8-layer CNN, then integrated two improvement techniques: (i) batch normalization (BN) and (ii) dropout (DO). Finally, we utilized rank-based stochastic pooling (RSP) to substitute the traditional max pooling. This resulted in BDR-CNN, which is a combination of CNN, BN, DO, and RSP. This BDR-CNN was hybridized with a two-layer GCN, and yielded our BDR-CNN-GCN model which was then utilized for analysis of breast mammograms as a 14-way data augmentation method. ResultsAs proof of concept, we ran our BDR-CNN-GCN algorithm 10 times on the breast mini-MIAS dataset (containing 322 mammographic images), achieving a sensitivity of 96.20±2.90%, a specificity of 96.00±2.31% and an accuracy of 96.10±1.60%. ConclusionOur BDR-CNN-GCN showed improved performance compared to five proposed neural network models and 15 state-of-the-art breast cancer detection approaches, proving to be an effective method for data augmentation and improved detection of malignant breast masses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call