Abstract
In this report, the utilization of mixed methanol–ethanol system for the production of biodiesel from waste cooking oil (WCO) using enhanced eggshell-derived calcium oxide (CaO) nano-catalyst was investigated. CaO nano-catalyst was produced by calcination of eggshell powder at 900 °C and followed by hydration-dehydration treatment to improve its catalytic activity. The particle size, morphology, and elemental composition of a catalyst were characterized by using XRD, SEM, and EDX techniques, respectively. After hydration-dehydration the shape of a catalyst was changed from a rod-like to honeycomb-like porous microstructure. Likewise, average particle size was reduced from 21.30 to 13.53 nm, as a result, its surface area increases. The main factors affecting the biodiesel yield were investigated, accordingly, an optimal biodiesel yield of 94% was obtained at 1:12 oil to methanol molar ratio, 2.5 wt% catalyst loading, 60 °C, and 120-min reaction time. A biodiesel yield of 88% was obtained using 6:6 equimolar ratio of methanol to ethanol, the yield even increased to 91% by increasing the catalyst loading to 3.5 wt%. Moreover, by slightly increasing the share of methanol in the mixture, at 8:4 ratio, the maximum biodiesel yield could reach 92%. Therefore, we suggest the utilization of methanol–ethanol mixture as a reactant and eggshell-derived CaO as a catalyst for enhanced conversion of WCO into biodiesel. It is a very promising approach for the development of low-cost and environmentally friendly technology. Properties of the biodiesel were also found in good agreement with the American (ASTM D6571) fuel standards.
Highlights
In this report, the utilization of mixed methanol–ethanol system for the production of biodiesel from waste cooking oil (WCO) using enhanced eggshell-derived calcium oxide (CaO) nano-catalyst was investigated
The X-Ray Diffraction (XRD) results are in a very good agreement with a similar previous report on eggshell-derived calcium oxide powder prepared from eggshell 46
Biodiesel was produced from low-cost waste cooking oil using an enhanced CaO nano-catalyst prepared from chicken eggshell using hydration-dehydration treatment followed by calcination
Summary
The utilization of mixed methanol–ethanol system for the production of biodiesel from waste cooking oil (WCO) using enhanced eggshell-derived calcium oxide (CaO) nano-catalyst was investigated. Asikin-Mijan et al (2015) showed that hydration treated clam shell derived CaO effectively convert palm oil into biodiesel with 98% yield after 2 h of reaction time at methanol to oil molar ratio of 9:1, catalyst loading of 1wt%, and temperature of 65 °C40.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.