Abstract

Application of genetic algorithm (GA), which leads to globally optimal binary interaction parameters from multi-component liquid–liquid equilibrium data, has been recently demonstrated for some ternary, quaternary and quinary systems. The binary interaction parameters are related to each other through the closure equations. In this work, the binary interaction parameters based on non-random two liquid (NRTL) activity coefficient model have been estimated using GA, without and with closure equations for 65 multi-component aromatic extraction systems: 53 ternary, 9 quaternary and 3 quinary systems. Parameters that satisfy the closure equations exhibit better root mean square deviations than those that do not satisfy the closure equations. Root mean square deviation value without implementation of closure equations is 0–80% better than literature as compared to 0–90% better with implementation of closure equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.