Abstract

An auto controlled ant colony optimization algorithm controls the behavior of the ant colony algorithm automatically based on a priori heuristic. During the experimental study of auto controlled ACO algorithm on grid scheduling problem, it was observed that the induction of lazy ants not only reduces the time complexity of the algorithm but also produces better results on the given objectives. Lazy ants are basically a mutated version of active ants that remain alive till the fitter lazy ants are generated in the successive generations. This work presents an improved auto controlled ACO algorithm using the lazy ant concept. Performance study reveals the efficacy and the efficiency achieved by the proposed algorithm. A comparative study of the proposed method with some other recent meta-heuristics such as auto controlled ant colony optimization algorithm, genetic algorithm, quantum genetic algorithm, simulated annealing and particle swarm optimization for grid scheduling problem exhibits so.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.