Abstract
A star graph is a tree of diameter at most two. A star forest is a graph that consists of node-disjoint star graphs. In the spanning star forest problem, given an unweighted graph G, the objective is to find a star forest that contains all vertices of G and has the maximum number of edges. This problem is the complement of the dominating set problem in the following sense: On a graph with n vertices, the size of the maximum spanning star forest is equal to n minus the size of the minimum dominating set.We present a 0.71-approximation algorithm for this problem, improving upon the approximation factor of 0.6 of Nguyen et al. (SIAM J. Comput. 38:946–962, 2008). We also present a 0.64-approximation algorithm for the problem on node-weighted graphs. Finally, we present improved hardness of approximation results for the weighted (both edge-weighted and node-weighted) versions of the problem.Our algorithms use a non-linear rounding scheme, which might be of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.