Abstract
The Maximum Happy Vertices (MHV) problem and the Maximum Happy Edges (MHE) problem are two fundamental problems arising in the study of the homophyly phenomenon in large scale networks. Both of these two problems are NP-hard. Interestingly, the MHE problem is a natural generalization of Multiway Uncut, the complement of the classic Multiway Cut problem. In this paper, we present new approximation algorithms for MHV and MHE based on randomized LP-rounding techniques. Specifically, we show that MHV can be approximated within \(\frac{1}{\varDelta +1}\), where \({\varDelta }\) is the maximum vertex degree, and MHE can be approximated within \(\frac{1}{2} + \frac{\sqrt{2}}{4}f(k) \ge 0.8535\), where \(f(k) \ge 1\) is a function of the color number k. These results improve on the previous approximation ratios for MHV, MHE as well as Multiway Uncut in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.