Abstract

In this paper, we propose a new Double Gate Junctionless (DGJ) MOSFET design based on both gate material engineering and drain/source extensions. Analytical models for the long channel device associated to the drain current, analog and radio-frequency (RF) performance parameters are developed incorporating the impact of dual-material gate engineering and two highly doped extension regions on the analog/RF performance of DGJ MOSFET. The transistor performance figures-of-merit (FoM), governing the analog/RF behavior, have also been analyzed. The analog/RF performance is compared between the proposed design and a conventional DGJ MOSFET of similar dimensions, where the proposed device shows excellent ability in improving the analog/RF performance and provides higher drain current and improved figures-of-merit as compared to the conventional DGJ MOSFET. The obtained results have been validated against the data obtained from TCAD software for a wide range of design parameters. Moreover, the developed analytical models are used as mono-objective function to optimize the device analog/RF performance using Genetic Algorithms (GAs). In comparison with the reported numerical data for Inversion-Mode (IM) DG MOSFET, our optimized performance metrics for JL device exhibit enhancement over the reported data for IM device at the same channel length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call