Abstract

Adjuvants can regulate the immune response triggered by vaccines. Traditional aluminum adjuvants can induce humoral immunity, but they lack the ability to effectively induce Th1 cellular immunity, which is not conducive to the development of vaccines with improved protective effects. Aluminum adjuvants from different sources may have different physicochemical properties, and therefore, completely different immune responses can be triggered. This suggests that adjuvant recognition by the immune system and its responses are closely associated with the physicochemical properties of the adjuvant itself. To test this hypothesis, in this study, we developed a new method for preparing an aluminum adjuvant. This aluminum adjuvant has a pseudoboehmite structure, strong protein adsorption capacity, and excellent suspension stability. The adjuvant was tested using the hepatitis B virus surface antigen (HBsAg) as a model antigen for immunization; the results showed that this aluminum adjuvant effectively induced not only humoral immunity but also an outstanding cellular immune response. These results provide a reference for improving the efficacy of adjuvants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.