Abstract

Hepatitis B virus surface antigen (HBsAg) is a major antigen of hepatitis B virus (HBV). Dendritic cells (DC) of HBV carriers have been reported to exhibit functional impairment. In this study, the role of HBsAg on mice bone marrow-derived dendritic cells and immune responses in vivo was studied. The immune modulatory function of HBsAg was explored by using mice bone marrow-derived dendritic cells in vitro and also by examining an ovalbumin (OVA) specific immune response in vivo. Treatment of dendritic cells with HBsAg resulted in enhanced cell surface expression of cluster of differentiation (CD) 80, CD83, CD86, and major histocompatibility complex (MHC) class II, and enhanced production of interleukin (IL)-12 p40 and IL-12 p70. Treatment of dendritic cells with HBsAg resulted in decreased T cell secretion of IL-5 by OVA stimulation. In addition, the results showed stronger OVA-specific immunoglobulin (Ig) M and weaker IgG responses in mice sera when they had been immunized with OVA and co-injected with HBsAg. It was also found that the mice exhibited significant enhancement of anti-OVA IgG2a antibody (Ab), as well as marked inhibition of IgG1 Ab production. In cellular immune responses, IL-5 production was significantly decreased and interferon (IFN)-γ increased in the group co-injected with HBsAg. On the other hand, the induction of lymphoproliferative response to OVA stimulation in spleen cells was decreased in the HBsAg co-injected group. These results demonstrate that HBsAg can affect the differentiation of T helper (Th) cells, which might provide a strategy for improving its prophylactic and therapeutic efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call