Abstract
The NP-complete Power Dominating Set problem is an “electric power networks variant” of the classical domination problem in graphs: Given an undirected graph G=(V,E), find a minimum-size set P⊆V such that all vertices in V are “observed” by the vertices in P. Herein, a vertex observes itself and all its neighbors, and if an observed vertex has all but one of its neighbors observed, then the remaining neighbor becomes observed as well. We show that Power Dominating Set can be solved by “bounded-treewidth dynamic programs.” For treewidth being upper-bounded by a constant, we achieve a linear-time algorithm. In particular, we present a simplified linear-time algorithm for Power Dominating Set in trees. Moreover, we simplify and extend several NP-completeness results, particularly showing that Power Dominating Set remains NP-complete for planar graphs, for circle graphs, and for split graphs. Specifically, our improved reductions imply that Power Dominating Set parameterized by |P| is W[2]-hard and it cannot be better approximated than Dominating Set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.