Abstract

Although pentraxin-3 holds promise as a diagnosis/prognosis biomarker of microbial infections and lung cancer, its analysis in human serum can be constrained by matrix effects caused by high abundance proteins – human serum albumin and immunoglobulin G. Aqueous biphasic systems composed of polymers and citrate buffer are here proposed as a serum pretreatment step to improve the accuracy of pentraxin-3 analysis. Binodal curves were determined to identify the compositions required to form two phases and to correlate the polymers' properties and performance in serum pretreatment and biomarker extraction. Aqueous biphasic systems were evaluated regarding their ability to deplete human serum albumin and immunoglobulin G at the interphase. Polymers of relatively high to intermediate hydrophobicity were unveiled as efficient components to deplete high abundance serum proteins. Considering the possibility to extract pentraxin-3 from human serum into the polymer-rich phase, the system composed of polyethylene glycol with a molecular weight of 1000 g·mol−1 simultaneously achieved >93 % of human serum albumin and immunoglobulin G depletion and complete biomarker extraction. The accuracy of analysis of pretreated human serum by enzyme-linked immunosorbent assays outperformed that of a non-pretreated sample, with a relative error of 0.8 % compared to 14.6 %, contributing to boost pentraxin-3 usefulness as a biomarker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.