Abstract

In order to enable the detection of low abundance proteins from human plasma, it is necessary to remove high abundance proteins. Among them, human serum albumin and immunoglobulin G represent more than 75% of all such proteins. In this paper, the characterization of short monolithic columns was performed followed by the optimization of a multidimensional approach, known as conjoint liquid chromatography, to deplete human serum albumin and immunoglobulin G from a human plasma sample. Two different chromatographic modes were used: ion-exchange chromatography and affinity chromatography. A monolithic stationary phase (convective interaction media disk) bearing strong anion-exchange groups and another immobilized with protein G were placed in series into one housing. The optimal binding conditions were found that removed a majority of human serum albumin and immunoglobulin G from the human plasma sample. This method was compared to the depletion using a combination of pseudo-affinity and affinity columns. The results of the human serum albumin and immunoglobulin G depletion were confirmed by 2D electrophoresis. It has been shown that anion-exchange and affinity chromatography using convective interaction media monolithic columns can represent an efficient complementary technique for human serum albumin and immunoglobulin G removal from human plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call