Abstract

A silica-based thin film was synthesized on polycarbonate substrates topped with acrylic primer. The synthesis was performed by chemical vapor deposition under a remote-type atmospheric pressure plasma. The source gas used was TrMS/O2, and the carrier gas used was either He or Ar. The abrasion resistance and adhesion strength were improved by changing the carrier gas from He to Ar. After a standard Taber abrasion test, the minimum change in haze value was approximately 1.3% for a sample synthesized under Ar (below the 2.0% requirement for vehicle window glass). The adhesion strength between the thin film and the substrate probably improved because of the etching effect of the primer by the Ar plasma during the deposition. The results confirmed that atmospheric remote technology can synthesize silica-based films and demonstrated that the technology is applicable to manufacturing vehicle window glass replacements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call