Abstract

We have previously shown that only 0.01% cells survive a metabolic challenge involving lack of glutamine in culture medium of SUM149 triple-negative Inflammatory Breast Cancer cell line. These cells, designated as SUM149-MA for metabolic adaptability, are resistant to chemotherapeutic drugs, and they efficiently metastasize to multiple organs in nude mice. We hypothesized that obesity-related molecular networks, which normally help in cellular and organismal survival under metabolic challenges, may help in the survival of MA cells. The fat mass and obesity-associated protein FTO is overexpressed in MA cells. Obesity-associated cis-acting elements in non-coding region of FTO regulate the expression of IRX3 gene, thus activating obesity networks. Here we found that IRX3 protein is significantly overexpressed in MA cells (5 to 6-fold) as compared to the parental SUM149 cell line, supporting our hypothesis. We also obtained evidence that additional key regulators of energy balance such as ARID5B, IRX5, and CUX1 P200 repressor could potentially help progenitor-like TNBC cells survive in glutamine-free medium. MO-I-500, a pharmacological inhibitor of FTO, significantly (>90%) inhibited survival and/or colony formation of SUM149-MA cells as compared to untreated cells or those treated with a control compound MO-I-100. Curiously, MO-I-500 treatment also led to decreased levels of FTO and IRX3 proteins in the SUM149 cells initially surviving in glutamine-free medium as compared to MO-I-100 treatment. Interestingly, MO-I-500 treatment had a relatively little effect on cell growth of either the SUM149 or SUM149-MA cell line when added to a complete medium containing glutamine that does not pose a metabolic challenge. Importantly, once selected and cultured in glutamine-free medium, SUM149-MA cells were no longer affected by MO-I-500 even in Gln-free medium. We conclude that panresistant MA cells contain interconnected molecular networks that govern developmental status and energy balance, and genetic and epigenetic alterations that are selected during cancer evolution.

Highlights

  • Cancer resembles an evolution-like process in the body, involving epigenetic and genetic alterations in tumor cells accompanied by a selection process that eliminates a majority of cancer cells [1,2,3]

  • The FTO locus controls energy balance through the alpha-ketoglutarate-dependent RNA demethylase activity of FTO protein, and through a long-range chromatin interaction between FTO and IRX3 loci [18, 19]. This leads to IRX3 overexpression; abnormal IRX3 expression is an important driver of obesity and type 2 diabetes

  • Considering the important role of IRX3 in obesity, we determined the level of IRX3 protein in SUM149-metabolically adaptable (MA) cells and found it to be significantly elevated as compared to the parental SUM149 cell line (Fig 1)

Read more

Summary

Introduction

Cancer resembles an evolution-like process in the body, involving epigenetic and genetic alterations in tumor cells accompanied by a selection process that eliminates a majority of cancer cells [1,2,3]. Immune surveillance is one of the multiple challenges that cancer cells would face before metastasis as they try to colonize at a distant organ site It is well accepted at this time that only a small percentage of cancer cells present in the overall population may have an ability to generate an embryo-like cellular heterogeneity that may provide a survival advantage during cancer evolution. It is commonly accepted that we must find ways to apply effective combination therapies in a timely manner to improve outcomes of patient survival, but there are serious hurdles in identifying and implementing such therapies To facilitate this task, we have developed a usable in vitro system of realistic intrinsic resistance in highly heterogeneous triple negative breast cancer (TNBC) [4,5,6] for testing new combination therapies [7, 8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call