Abstract

We investigate the exact full configuration interaction quantum Monte Carlo algorithm (without the initiator approximation) applied to weak sign-problem fermionic systems, namely, systems in which the energy gap to the corresponding sign-free or "stoquastized" state is small. We show that the minimum number of walkers required to exactly overcome the signproblem can be significantly reduced via an importance-sampling similarity transformation even though the similarity-transformed Hamiltonian has the same stoquastic gap as the untransformed one. Furthermore, we show that in the off-half-filling Hubbard model at U/t = 8, the real-space (site) representation has a much weaker signproblem compared to the momentum space representation. By applying importance sampling using a Gutzwiller-like guiding wavefunction, we are able to substantially reduce the minimum number of walkers in the case of 2 × ℓ Hubbard ladders, enabling us to get exact energies for sizable ladders. With these results, we calculate the fundamental charge gap ΔEfund = E(N + 1) + E(N - 1) - 2E(N) for the ladder systems compared to strictly one-dimensional Hubbard chains and show that the ladder systems have a reduced fundamental gap compared to the 1D chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call